注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

lbw2007

黑夜赐给我一双黑色的眼睛,我却给它滴眼药水!

 
 
 

日志

 
 

计算物理学   

2013-03-08 22:36:20|  分类: 科学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
计算物理学 计算物理学是一门新兴的边缘学科。利用 现代电子计算机的大存储量和快速计算的有利条 件,将物理学、力学、天文学和工程中复杂的多 囚素相互作用过程,通过计算机来模拟。如原子 弹的爆炸、火箭的发射,以及代替风洞进行高速 飞行的模拟试验等。 基本信息 定义 计算物理学是一门新兴的边缘学科。利用 现代电子计算机的大存储量和快速计算的有利条 件,将物理学、 力学 、 天文学 和工程中复杂的多 囚素相互作用过程,通过计算机来模拟。如 原子 弹 的爆炸、 火箭 的发射,以及代替风洞进行高速 飞行的模拟试验等。应用计算物理学的力一法, 还可研究 恒星 ,特别是 太阳 的演化过程。 简介 物理最早以实验为主。1862年 麦克斯韦 (maxwell)将 电磁 规律总结为麦克斯韦方 程,进而理论上预言了 电磁波 的存在,使得人们 看到了理论物理思维的巨大威力。从此理论物理 学进入研究和成熟阶段,并经历了两次重大的突 破:相继诞生了 量子力学 和 相对论 。计算机的发 展就产生了计算物理。 实验物理是以实验和观测为基础,揭示新 的物理现象,探求物理现象后面的原因,为发现 新的物理理论提供依据,或者检验理论物理推论 的正确性和应用范围。 理论物理是从一系列的基本物理原理出 发,列出数学方程,再用传统的数学分析方法求 出解析解,通过这些解析解所得到的结论和实验 观测结果进行对比分析,从而解释已知的实验现 象并预测未来的发展。 计算物理学研究如何应用高速计算机为工 具,去解决物理学研究中复杂的计算问题。如今 已经发展以下方向,即计算机数值计算方法和计 算机符号计算,以及计算机数值模拟和计算机控 制。 计算物理所依赖的理论原理和数学方程由 理论物理提供,结论还需要理论物理来分析检 验。同时所需要的数据是由实验物理提供的,结 果也需要实验来检验。对实验物理而言,计算物 理可以帮助解决实验数据的分析,控制实验设 备,自动化数据获取以及模拟实验过程等。对理 论物理而言,计算物理可以为理论物理研究提供 计算数据,为理论计算提供进行复杂的数值和接 下运算的方法和手段。计算物理学研究如何使用 数值方法解决已经存在定量理论的物理问题。 重要性 在物理学中,大量的问题是无法严格求解 的。有的问题是因为计算过于复杂,有的问题则 根本就没有解析解。比如,经典力学中,三体以 上问题,一般都无法求解。量子力学中,哪怕是 单粒子问题,也只有在少数几种简单势场中的运 动可以严格求解。因此,在 现代物理 中, 数值计 算方法 已变得越来越重要。 计算物理学在八十年代还只被作为沟通理 论物理学与实验物理学之间的桥梁。但是最近几 年,随着计算机技术的飞速发展和计算方法的不 断完善,计算物理学在物理学进一步发展中扮演 着越来越重要的不可替代的角色,计算物理学越 来越经常地与理论物理学和实验物理学一起被并 称为现代物理学的三大支柱。很难想象一个21 世纪的物理系毕业生,不具备计算物理学的基本 知识,不掌握计算物理学的基本方法。 它主要包括在传统物理课题中常用的数值 计算方法(如 偏微分方程 的数值求解方法、计算 机模拟方法中的随机模拟方法--蒙特卡罗方法和 确定性模拟--分子动力学方法以及神经元网络方 法)以及计算机符号处理等内容。 课程与发展 课程 计算物理学是综合大学研究生物理各专业 的一门基础课.学计算物理学的目的: (1)是使学生系统地掌握 物理模型 和 数学 模型 的建立方法和数值计算方法的选取原则; (2)是使学生获得分析和处理一些物理问 题的基本方法和解决问题的能力,提高 逻辑推理 和插象思维的能力,为独立解决科学研究中的实 际问题打下必要的数学物理基矗 在教学过程中,使用启发式教学,尽量多介 绍与该课程相关的前沿科技动态,充分调动和发 挥学生的主动性和创新性;提倡学生自学,培养学 生的的自学能力。 发展 由于计算方法的深入发展和过去几十年中 高速计算机的出现和普及,随着 物理学 基础理论 的进一步突破,物理学家们逐步可以应用一些更 严格和更全面的复杂模型,来定量研究实际的复 杂体系的物理性质。基于物理学基本原理的数值 计算和模拟已经成为将 理论物理 和 实验物理 紧密 联系在一起的一座重要桥梁:它不仅能够弥补简 单的解析理论模型难以完全描述复杂物理现象的 不足,而且可以克服实验物理中遇到的许多困 难,例如直接模拟实验上不能实现或技术条件要 求很高、实验代价昂贵的物理系统等。计算机模 拟技术已经渗透到物理学的各个领域,包括 凝聚 态物理 、 核物理 、 粒子物理 、天体物理等,导致 了计算物理这一新学科的突破性发展和成熟。从 20世纪40年代开始,计算物理学家们已经发展 了大量新数值方法(如MonteCarlo方法、 分子动 力学方法 、快速Fourier变换等),由此发现了很 多未曾预料到的新现象,并给理论和实验物理学 提出了许多新问题。总之,计算物理已成为物理 学家揭示多层次复杂体系的物理规律的重要手 段,同时也广泛应用于处理实验结果和提出物理 解释。对一个成功的物理学家来说,掌握必要的 计算物理学知识和手段已变得越来越重要。越来 越多的大学已针对将要从事物理学及相关学科研 究的研究生和本科生开设了计算物理课程。 研究方法 计算物理学具体的方法有: 蒙特卡罗方法 (不确定性方法)、 分子动力学方法 (确定性) 有限差分法 ,有限元素法, 计算机代数 (mathmatic,matlab),神经元网络方法, 元胞自动机方法,高性能并行计算。 一个多 粒子 体系的实验可以观测的物理量 (状态量)的数值可以由其涉及的态的量值的总 的统计平均求得。实际上按照产生位形变化的方 法,有两类方法对有限的系列态的物理量做统计 平均。 随机模拟方法 随机模拟方法中体系位形的转变是通过 马 尔可夫 (Markov)过程由随机性的演化引起 的。马尔可夫过程相当于是内禀动力学在概率方 面的对应。该方法可以用到没有任何内禀动力学 模型体系的模拟中。该法计算程序简单,占内存 少,但难于处理非平衡态的问题。 确定性模拟方法 确定性模拟方法即统计物理中的MD方 法。这个方法广泛用于研究经典的多粒子体系。 其按体系内部的内禀动力学规律(??)来计算 并确定其位形的转变。首先需要建立一组分子的 运动方程,通过直接对系统中的一个个分子运动 方程的数值求解,得到各个时刻的分子的坐标和 动量,即相空间中的轨迹,利用统计力学计算方 法得到多体系统的静态或者动态性质,从而得到 系统的宏观性质。该法特征是一个体系,一段时 间,其方程组的建立要通过对物理体系的微观数 学描述给出,微观体系中每隔分子各自服从经典 的牛顿力学,而每个分子运动的内禀动力学是利 用理论力学上的哈密顿量或者拉格朗日量来描 述,或者用牛顿运动方程表示。方法中不存在随 机因素。该法是实现玻尔兹曼(boltzmann) 的统计力学,可以处理与时间有关的过程,因而 可以处理非平衡态问题。确点是程序复杂,计算 量大,占内存多。 原则上MD方法适用的微观物理体系并无 限制,这个方法适用于少体和多体系统,也可以 是点粒子系统或者具有内部结构的系统,也可以 是分子系统或者其他粒子系统。 但是上述两种模拟方法都面临基本限制: 其一有限的观测时间,其二是有限系统大校人们 通常感兴趣于体系在热力学极限(粒子数趋于无 穷多时)的性质,因此计算机模拟有限体系可能 会出现有限尺寸效应,为减小该效应,人们引入 周期性,全发射, 漫反射 等边界条件。当然同时 边界条件的引入也会引起体系某些性质的变化。 其它 另外,体系的运动方程组采用计算机进行 数值求解时,要将方程离散化为有限差分法。常 用的方法有 欧拉法 ,龙格-库塔法,辛普生法 等。数值计算的误差阶数显然也取决于所采用的 数值求解方法的近似阶数,原则上计算机计算速 度足够大,内存足够多,可以使得误差降低。 MD方法中,最自然的应用是 微正则系 综 ,这时能量是守恒的。当我们要研究温度和压 力是常量的系统时,系统不能是封闭的。MD方 法中常常是在想像中将系统放入热浴和压浴中, 实际上在计算中往往是对某些自由度进行限制和 约束来实现的。例如恒温时是保证其体系的平均 动能不变,为此设计新的算法,由于新的约束出 现,我们并不是处理一个真正的正则系综,实际 上是仅仅复制了系综的位形部分。理论上讲,只 要这个约束没有破坏一个状态到另一个状态的马 尔可夫特性(???),这样做就是可行的,当 然其动力学性质可能会受到这一约束的影响。 自20世纪50年代以来,MD方法得到广泛 应用,取得一定成功。例如对于 气体 或 液体 的状 态方程,相变问题,吸附问题,扩散问题,以及 非平衡过程的问题研究,应用范围从化学反应、 生物学的 蛋白质 , 重离子 的碰撞,材料设计, 纳 米科技 等广泛的学科和研究领域
  评论这张
 
阅读(120)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017